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1 Introduction

This is the final report on our work under ARO-SDI Contract DAAL03-87-K-0033, April 1, 1987

through March 31, 1990.

The major results are in two areas:

1. Studies of systematic design procedures for a class of structured algorithms oPen encountered

in signal processing applications. These are what we have called Regular Iterative Algorithms

(RIAs) for which our results are summarized in Section 2.

It might be mentioned that these ideas have been successfully used by one of our former

students who helped to develop this theory, Dr. S. K. Rao of AT&T Bell Laboratories in

Holmdel, N.J. Dr. Rao has found the RIh_ results helpful in designing several fast integrated

circuit chips for communications and signal processing applications, some of which are being

used in the AT&T - ZENITH joint effort on High Definition Television (HDTV).

2. The other set of results deals with the issue of designing configurable and fault-tolerant pro-

cessor arrays such that if some of the processors in the given array are faulty, then a fault

free array can be constructed comprising only the healthy processors. Such studies can be

easily motivated in the case of Wafer Scale Integration (WSI) technology where for example,

a large number of processors, configured in the form of a grid, can be put on a single wafer.

Due to yield problems, some of the processors are invariably going to be faulty. In such a

case, instead of treating the whole wafer as defective, one can work around the faulty pro-

cessors and reconfigure the rest in the form of a grid. Thus, reconfiguration methodologies

can be viewed as possible tools to increase the effective yield of the processing technology.

The general models that we have explored consist of a set of identical processors embedded

in a flexible interconnection structure that is configured in the form of a rectangular grid. In

particular, we studied models that use only limited hardware resources (such as a single-track

or only a few tracks along every grid line) and developed the first known efficient algorithms

for reconfiguration in such models. In the process we have also developed new models that

use limited hardware and yet has higher reconfigurability than other models studied in the

literature. Our results on this topic are summarized in Section 3.

2 Summary of Our Work on Regular Iterative Algorithms

Our previous work has shown that (see e.g. , [9, 10, 26, 27, 28, 29, 37]) that once a Regular

Iterative Algorithm is designed for a given problem, then one can use the systematic design theory

developed by us to generate efficient processor arrays. However, the following two important issues

were left unresolved in the general area of designing special purpose processor arrays: 1. Systematic
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procedures for scheduling and mapping any given RIA was not fully developed. Our previous work

had answered this issue partially and some theoretical gaps had remained in the framework 2. Most

algorithms are not given to the designer in the RIA form and most initial representations are either

sequential in nature (e.g., FORTRAN or PASCAL programs) or general mathematical expressions.

Hence, one needs to develop systematic procedures for deriving RIAs. In our work we have resolved

both the above issues. In particular, we have developed a general framework for scheduling and

mapping any given RIA; we have also developed a formal methodology for systematic formulation

of RIAs starting from representations that we refer to as linearly indexed Assignment Codes. It

can be shown that such codes are very close to the mathematical expressions of a wide variety of

problems, especially in signal processing and matrix algebra.

In this section, we shall first briefly introduce RIAs and summarize our contributions in the

analysis and implementation of such algorithms. We shall then briefly summarize our formal

methodologies for scheduling and general RIA and also for deriving RIAs starting from general

representations such as mathematical formulas.

2.1 Regular Iterative Algorithms and Our Contributions

A formal definition of RIAs can be found in [13, 29, 37]; here we shall introduce RIAs via a simple

example.

Example 2.1 (2-D Filtering Algorithm): It can be shown (see [26, 29]) that certain

numerically stable 2-D filtering algorithms due to Deprettere and Dewilde [5], Vaidyanathan and

Mitra [43], and Fettweis [6], can all be written in the form:

For all (ij,k), where O<i<n and O<j,k<N, do

x(i,j + 1, k + 1) = f.,i(z(i,j, k), y(i,j, k), w(i,j, k))

y(i + 1, j, k) = f,, i(x(i, j, k), y(i, j, k), w(i, j, k))

w(i - 1, j, k) = f.,i(z(i, j, k), w(i, j, k))

where f.,j, fy,,, f,., are linear functions that arc dctermined by a synthesis procedure.
11

The example displays the following (characteristic) features of an RIA:

Each variable in the RIA is identified by a label (e.g., z, y or w in example 1) and an index

vector (e.g. , I = [i j k]T, in example 1). The set of all index points over which the variables

of the RIA are defined is called the index space, which is a subset of the an S-dimensional

integer lattice, Zs.
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The dependences among the variables are regular with respect to the index points. That is,

if xj(I) is computed using the value of x 2(I - d 12 ) then the index displacement vector d12 ,

corresponding to this direct dependence, is the same regardless of the index point I.

The set of computations performed at every index point is often referred to as the iteration unit

of the RIA. Also, note that although the direct dependences among the variables in an RIA are

required to be independent of the index points, the actual computations carried out to evaluate

these variables can depend on the index point. In general, the index space I will be semi-infinite

along certain coordinates and bounded along others. The bounds on the coordinates will be referred

to as the size parameters of the RIA.

The regular dependences of an RIA lead to a dependence graph with an iterative structure.

which can be clearly demonstrated by embedding the dependence graph within the index space.

That is, a set of V nodes is defined at every index point I in the index space I, where the ith node

represents the variable xi(I) in the RIA. As first noted by Karp et al. [13] and by Waite [45], the

regularity of the dependence graph of an RIA can be concisely expressed in terms of a simpler and

smaller graph called the Reduced Dependence Graph (RDG). The RDG of an RIA (see Fig. 1) has

one node for each of the indexed variables in the RIA; it has a directed arc from node xi to node xj.

if xj(I) is computed using the value of xi(I - dij) for some dij; finally, each directed arc is assigned

a vector weight representing the displacement of the index point across the direct dependence. We

should note that the RDG and a specification of the index space I, completely characterize the

dependence graph of an RIA; hence, the analysis of parallelism in an RIA is based on the analysis

of the RDG instead of the larger dependence graph.

Some of our important results are enumerated below; for a detailed account of the work reported

here previous work please see [26, 37]

1. A formal definition of mystolic arrays was obtained that captured their generally accepted

properties, especially regularity (mostly identical processors), spatial locality (local intercont-

nections), temporal locality (no delay-free operations, or more precisely, all combinational

elements are latched) and pipelined operation (throughput independent of the order, suitably

defined, of the system). Some authors (e.g, Leiserson et al. [19]) had used only a subset

of these properties, but the consensus in the literature appeared to have required all those

mentioned above (see e.g., [28] and [16]).

2. A reasonable generalization of the concept of systolic arrays that allowed implementation of a

larger class of algorithms (including of course all systolic algorithms) was also developed. The

generalization allowed the presence of register pipelines of various lengths at different points in

a regular array of (mostly) identical processors, and sometimes also some LIFO (Last-In-First-

Out) buffers. Such architectures have almost all the advantages that make systolic arrays so

3
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Figure 1: The RDG of the RIA in the above example.

appealing for VLSI; the only added requirement is that some of the processors may requirc

certain amount of memory in them. We should note here that the memory requirement is

not a major bottleneck, and certain commercial products such as the WARP developed at

CMU, routinely provide such on-processor memory.

Rao et al. called such arrays Regular Iterative Arrays, and algorithms implementable on such

arrays were dubbed as Regular Iterative Algorithms. It is convenient to use the acronym RIA

to stand for either of these concepts, the exact one to be inferred from the context. Using

the above concepts, and their consequences, one can show for example that there are Regular

Iterative Algorithms (e.g. , RIAs for certain classes of 2-D filtering algorithms, RIAs for

certain pivoting algorithms [37, 31, 34] etc.) that cannot be implemented on systolic arrays,

as formally defined, but can be implemented on regular iterative arrays.

3. It was also shown [10, 16, 26, 37] that many algorithms in digital filtering (convolution,

correlation, autoregressive, and moving-average filtering), numerical linear algebra, discrete

methods for PDEs and ODEs, graph theory (transitive closure, some coloring problems)

can be reformulated as RIAs. Systematic procedures for converting algorithms into RIAs,

however, remained as an open problem.

4. For any RIA, formal methods to determine lower bounds on I/O latency and memory re-

quirements were developed; systematic procedures for implementing most RIAs on regular

processor arrays that can achieve the lower bound on I/O latency were also proposed (see

4



[26, 27, 29, 37]). We should mention here that these formal mapping techniques can generate

several possible architectures, though in practice one stops once a few efficient (i.e. , meeting

certain performance lower bounds) arrays have been obtained.

The theoretical question of scheduling and mapping any given RIA was left as an open

problem. Our recent results on this topic are summarized in Section 2.1.

5. In the design of systolic arrays, several issues such as systematic procedures for designing

multi-rate systolic arrays were resolved. In the conventional systolic array designs all oper-

ations were assumed to take the same amount of time; this led to unrealistic and inefficient

design. Our design procedure allows one to carry out the design with more realistic processor

modules that can increase the throughput by exploiting the fact that the time required to

carry out different operations is generally different.

2.2 Scheduling and Implementing A Given RIA

Herein we describe our novel subspace scheduling scheme that can be used to schedule and implement

any given RIA. Based on the analysis of the RDG, Karp et al. [13] showed that for a certain subclass

of RIAs, one can always determine a scheduling vector A and scalars 7.,, such that a variable xi(I)

can be scheduled at step ATI + y:,. Such schedules will be called uniform affine schedules. Thus,

two variables xi(I) and xi(J) are assigned the same schedule if AT(I - J) = 0. Equivalently, two

variables xi(I) and xi(J) are assigned the same schedule if I and J lie on the same hyperplane

defined by the normal vector A. Therefore, for such RIAs one can draw isotemporal hyperplanes

(see Fig. 2) in the index space, and because of this geometric interpretation, these schedules are

often referred to as hyperplanar schedules. We should note here that Rao et al. [26], [27] showed

that algorithms implementable on systolic arrays are exactly those RIAs that admit uniform affine

schedules.

Hyperplanar schedules, however, do not exist for all RIAs; one can show (see e.g. , [26], [29])

that the RIA in example 2 cannot have a hyperplanar schedule. Nonetheless, it turns out that

the scheduling properties of an RIA can be determined from the information gathered during the

execution of a so-called computability analysis procedure. The aim of the computability analysis

is to determine whether the given RIA is well-defined. A well-defined RIA should not have any

directed cycles (i.e. , the execution of a computation should not depend on its output) or any

directed paths coming from infinity (i.e. , every computation can be completed in a finite number

of steps) in its dependence graph. The computability analysis leads to an iterative decomposition

of the RDG, which results in a tree structure called the computability tree. It is shown (see [33].

[13], [26]) that an RIA cannot admit hyperplanar schedules if the depth of its computability tree,

1, is greater than 1.
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Figure 2: Isotemporal hyperplanes in the index space of an RIA that admits uniform affine sched-

ules.

In our work, [37, 32] we have shown that hyperplanar schedules, valid for only a restricted

subclass of RIAs, can be extended and that asymptotically optimal subspace schedules can be

determined to schedule any RIA defined over a bounded or a semi-infinite index space. In particular.

we show that if the depth of the computability tree is 1, and the dimension of the index space is

S, then for every indexed variable xi, one can determine a linear subspace Li of dimension S - 1.

such that two variables xi(!) and xi(J) can be scheduled at the same step if (I - J) E Li. Thus.

the proposed scheduling scheme defines isotemporal surfaces that are linear subspaces of dimension

S - 1, instead of dimension S - 1 (which is the case for hyperplanar schedules). Fig. 3 shows the

isotemporal lines in the index space of the RIA for 2-D filtering presented in example 2. We should

mention here that we have also devised alternati,- algebraic techniques for scheduling RIAs defined

over bounded index spaces. These algebraic scheduling techniques, however, do not always have

the same geometrical interpretation as the subspace scheduling schemes and are not valid for RIAs

defined over semi-infinite index spac,.s (note that, Karp et al. mostly studied RIAs defined over

semi-infinite index spaces only.)

We also show that the subspace scheduling scheme described above, can be used to characterize

the extent of parallelism in RIAs (i.e. , whether the given RIA has unbounded parallelism or not).

This was attempted by Karp et al. [13] in their seminal paper; however, the general result that we

prove here was left as a conjocture. In particular, we show that if the computability tree is of depth

6
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1 < S (where S is the dimension of the index space) then it always has unbounded parallelism, and

if I = S then it has bounded parallelism except possibly at the boundaries of the index space-.

The next issue can be motivated by observing that for RIAs admitting hyperplanar sthcdules,

one can write the schedule of a variable xi(l) explicitly as Ar + y,. Rao el al. j26], ['29, [271.

[10], extended this result and obtained explicit schedules for all RIAs defined over bounded index

spaces; however, explicit schedules for RIAs defined over semi-infinite index spaces have not been

developed. The explicit scheduling functions are still affine, z.e. , the schedule for a variable x,(J)

can be written as ATI + -y,,; however, the vector Ai may be different for different variables and

its entries along witl. y1 , will be functions of the size parameters (i.e. , the bounds) of the RIA.

For RIAs that are defined over semi-infinite index spaces we show that we can identify a precisely

defined subclass, such that the explicit schedule of a variable xi(I) can be expressed as a polynomial

in the indices of the index point I. For RIAs not belonging to this subclass, we show that one can

always come up with examples such that the schedule of xi(I) is exponential or double exponential

in the indices of I. However, we are able to refine our analysis further and provide a necessary and

sufficient condition for the schedule of a variable zi(I) to be polynomially bounded.

The results presented so far, on the analysis of parallelism in RIAs, are independent of im-

plemen- ation in any particular machine and can be used for executing RIAs in parallel on any

architecture. Previous work by several researchers beginning with [21], however, has shown that

RIAs are particularly well suited for implementation on regular mesh-connected processor arrays.

The proposed technique is to define a linear subspace, called the iteration space, such that compu-

tations corresponding to variables xi(I) and xi(J) are assigned to the same processor if the vector.

I - J belongs to the iteration space. A geometric interpretation of the mapping technique can

be obtained by decomposing the index space into parallel subspaces such that variables belonging

to the same subspace are assigned to the same processor. Fig. 4 shows the iteration space and a

resultant processor array for implementing the RIA in example 2. It can be shown that, because

of the regular structure of dependence graphs of RIAs, resultant processor arrays are regular with

fixed and local interconnections. This linear projection scheme for partitioning computations is

only the first step towards parallel implementation, and one has to make sure that the partitioning

scheme is compatible with scheduling techniques, i.e. , two computations scheduled at the same

step should not be assigned to the same processor.

We have shown [26], [331, [29] that given an RIA that is scheduled by a subspace scheduling

scheme as described before, one can always determine compatible iteration spaces. Recall that in

our subspace scheduling, xi(!) and zi(J) are assigned the same schedule if I - J belongs to an

isotemporal subspace; note that, isotemporal subspaces may be different for different variables x,.

Thus, for an iteration space to be compatible with a subspace schedule, one should satisfy the

following condition: if I - J (I $ J) is in the iteration space then it should not be in any of the

8
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isotemporal subspaces and vice-versa. In other words, an iteration space will be compatibl, with a

subspace schedule if and only if it has only zero intersection with the isotemporal subspace of each

variable xi in the RIA. Therefore, the procedure for designing processor arrays can be reduced to

the linear algebraic problem of determining a subspace that has no non-zero intersection with a

finite number of given subspaces.

We can now briefly summarize our new results on the analysis and implementation of RIAs as

follows (these results are based on the novel subspace scheduling scheme that we have developed):

1. We have developed a scheme to schedule any given RIA defined over a bounded or semi-infinite

index space. This generalizes the so-called hyperplanar schedules.

2. We have developed procedures to determine explicit schedules i.e. , formulas for the schedules

for a variable xi(I) are expressed as a function of i, I and possibly also of the size parameters

of the RIA. We have also analyzed the extent of parallelism in RIAs; this analysis leads to a

proof of a conjecture made in the seminal paper of Karp et al. [131.

3. We have shown that for any given RIA scheduled according to our subspace scheduling scheme,

there always exist compatible mesh-connected processor arrays for implementing it in parallel.

2.3 Systematic Formulation of RIAs

Let us first introduce the concept of localized algorithms that are close to RIAs (see e.g. , [37, 36, 35,

12, 331). The definition of the localized algorithms is motivated by the observation that there are

certain problems that can be solved by algorithms that have regular dependence graphs that are not

completely homogeneous. That is, the dependence graphs may have dependencies or computations

that are present only in certain portions of the dependence graphs. As we shall discuss in [37], one

way of handling such cases is to assume that the dependences and the computations are present

everywhere in the index space and then to apply the results for RIAs. There are several problems

where this approach is reasonable; for example the Gaussian elimination algorithm without pivoting

can be first written in the localized algorithm form and then can be implemented on processor arrays

by modeling the localized algorithm as an RIA. The other approach is to break up the dependence

graph into more than one component such that the dependence graph is homogeneous over each

component. The mapping techniques can then be applied to each such component with special

consideration to the dependences at the boundaries between the components. The latter approach

is discussed in more detail in [37] where the example of Gauss-Jordan elimination algorithm is

worked out.

The localized algorithms have statements of the form

x2 (I) = fi(x(lf- dii),'"., xv(I- div)) VIE Ii. (1)

10



Thus each statement in this algorithm may have a different index space of its own; as a comparison,

all statements in an RIA have the same index space.

Partial attempts have been made by several authors, including [14], [22], [15], [25], [4] and [7], to

formalize the conversion procedure for going from an initial representation to an RIA or a localized

algorithm. The first step always is to convert algorithms into equivalent Single Assignment Codes

(SACs) and the second step tries to localize the dependences by eliminating broadcasts. Single

assignment codes [2] are representations where every variable defined in the algorithm takes on a

unique value during the course of execution. The fact that the dependence graph of an algorithm can

be easily determined from its SAC, has made SACs a very useful starting representation for parallel

implementations of algorithms. Considering its importance, a lot of work has been done in trying to

convert sequential algorithms into SACs, see e.g., [24]. However, sequential algorithms are not the

only representations from which SACs can be derived. Often SACs can be derived systematically

from given mathematical expressions. Consider a mathematical expression for matrix multiplication

For all tuples (i,j), 1 < i,j < n do

E aik - bkj. (2)
for all 1<k<n

and a SAC

For all triples (i,j,k), 1 < i,j,k < n do

c(i,j,k + 1) := c(i,j,k) + aik" bkj (3)

In the mathematical expression, the ordering of operations in the inner product is not specified

and in fact it can be arbitrary because of the commutativity and associativity of the operation +.

However, in the given SAC the ordering is fixed and a degree of freedom has been lost. Since the

original representation has more freedom and potential parallelism in it, it would be desirable to

make it the starting representation and then systematically derive one or more SACs from it. It

turns out that a number of algorithms can be written in the form of (2) (see [37, 36, 35]), and

we shall refer to such representations as Assignment Codes (ACs). The prefix 'Single' has been

intentionally dropped to emphasize the fact that in such representations the number of inputs for

computing a variable may depend on the problem size, as opposed to a conventional SAC where the

number of inputs to every variable is restricted to be some constant, independent of the problem

size. From now on we shall refer to the number of inputs to a variable as its in-degree and the

number of variables that a particular variable is input to as its out-degree. If the in- or out-degree

of a variable depends on the problem size, then we shall define it to be unbounded. Thus, the

variables in ACs can have unbounded in- and out-degrees, whereas in SACs the variables have

bounded (i.e., constant) in-degrees but may have unbounded out-degrees.

11



We shall further restrict ourselves to linearly indexed ACs, which can be shown to be very close

to mathematical expressions for a number of problems, especially in signal processing and matrix

algebra. A linearly indexed AC has statements of the form

x(PI + d) depends on y(QI + e) for all I E I C ZS (4)

where P and Q are integral matrices independent of I, I is an index space which is the set of all

lattice points enclosed within a specified region in a S-dimensional Euclidean space and d. e are

constant displacement vectors. P and Q are often referred to as the indexing matrices. We have

shown in [37, 36, 35] that in- and out-degrees of variables x and y are completely determined by the

structure and dimension of the right null-space of each of the indexing matrices. Many algorithms

are actually directly available as (4), and examples include the formulas for matrix multiplication,

any m-dimensional convolution/correlation, matrix transposition, and solving matrix Lyapunov's

equation. Algorithms that are not directly in the form of (4) can often be easily put in that form

by analyzing their sequential representations (see [37]).

Example 3.1: The formula for matrix multiplication is:

For all tuples (i,j) , 1 < i,j< n do

cij := E aik • bkj

for all 1<k<n

The index space of the example is I = {(i,j,k) I1 < i,j,k < n}. There is one functional relation

in the given AC with the dependence matrices

0 1 0 Q 0 0 1 0 0 1

and the displacement vectors d, e = 0. 0

We have shown that a linearly indexed AC can be systematically decomposed into a linearly indexed

SAC and a linearly indexed dual SAC. Linearly indexed dual SACs may have variables with un-

bounded in-degrees but bounded out-degrees, as opposed to the linearly indexed SACs, which have

variables with bounded in degrees but possibly unbounded out degrees. Formal procedures will be

then outlined for converting linearly indexed SACs and linearly indexed dual SACs into localized

algorithms. The conversion of linearly indexed SACs to localized algorithms involves eliminating

global dependencies by propagating variables in a systematic manner in the index space. The

conversion of dual SACs to localized algorithms is achieved by distributing computations and in-

troducing an ordering among the computations. The two conversion procedures turn out to be

duals of each other. We should mention here that starting with linearly indexed ACs is by no

means essential in our approach; if one cannot find a AC easily, then one can try to use other

well-known techniques and start the procedure with a linearly indexed SAC.
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In summary, we have developed a hierarchical procedure for going from a higher level represen-

tation of an algorithm to a localized algorithm, which can be described by an RIA or a localized

algorithm. It can be described as follows:

Mathematical Description - Linearly Indexed Assignment Codes - Linearly Indexed

Single Assignment Codes and dual Single Assignment Codes - Localized Algorithms.

The conversion procedure is by no means unique and a number of localized algorithms can be gen-

erated starting from the same AC. To enable an efficient choice we have also developed procedures

to directly schedule and analyze linearly indexed codes of the form (4). For example, we have

developed necessary and sufficient conditions for determining whether a sequence of SACs of the

form (4) can be scheduled using affine schedules (see [37, 12, 33]). Procedures to schedule linearly

indexed codes that do not admit affine schedules are also discussed in [37].

3 Summary of Our Work on Reconfigurable Arrays

As evident from our work on regular iterative arrays (summarized in Section 2), an array of identical

processing elements is an indispensable architecture in the VLSI and WSI technology and proves

itself very useful in parallel processing applications. Often, however, during the fabrication process

or during run-time, some of the processing elements in a large array are inevitably going to be

faulty. Spare PEs and extra routing hardware are often provided so that a fault-free array can be

constructed; such reconfiguration capability can be used to increase the yield, and to guarantee

fault tolerance in applications when failure is not permissible. Our work in this regard has been

concerned with the design and analysis of such configurable fault-tolerant arrays.

The general model considered by us is shown in Fig. 5 (see e.g. , [20, 23, 30, 39, 40, 4!, 12]):

it consists of a set of identical processors embedded in a flexible interconnection structure that is

configured in the form of a rectangular grid. Each grid line in the mesh has a fixed number of data

paths that can be routed along it (i.e. , the model has fixed channel width); switches can be placed

at every grid point and at every location where a processor is connected to the grid. Furthermore,

often the processors are divided into a set of non-spare PEs (say an m x n array) and a set of spare

PEs that are distributed in a pre-determined fashion.

Given a set of faulty PEs, the objective is to reconfigure the connections among the PEs such

that a new rectangular logical array is formed comprising only the healthy PEs and demanding

no more hardware resources (e.g., spare PEs, tracks, and switches) than available. It is obvious

that the more the additional hardware, the higher is the reconfiguration probability. Nevertheless.

space and cost limitations might make it impossible to add as much hardware as one would want.

Such considerations lead to the following design question: What is the optimal amount of requirrd

hardware resources, i.e., the number of spare PEs, the channel width and the distribution of routing
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switches, such that the resulting architecture has high reconfigurability? A related important ques-

tion addresses the ease of reconfiguration: Given a configurable architecture with fixed resources,

are there efficient and simple algorithms for reconfiguring such architectures with high probability?

In our recent work we have provided partial answers to both the above issues. However, to

further motivate our results and contributions, and to introduce some of the relevant concepts wo

shall first briefly review the previous work in this area.

3.1 Background

In the context of reconfiguration of processor arrays, several researchers [8, 18] have addressed

important analytical issues of the following nature. Given an n x n array of PEs (or cells), each

of whicl can be faulty with probability p: (1) Can one devise 'good' algorithms that will connect

the non-faulty cells in the form of a grid with high probability? (2) With high probability, what

are the required channel width (defined as the maximum number of interconnection paths routed

along any grid line) and the length of the longest interconnecting wire?

As mentioned before, instead of asymptotic analysis, our studies have been motivated by a more

practical query: how to reconfigure arrays with only a small amount of extra routing hardware. A

general methodology to reconfigure arrays with faulty PEs is to determine the so-called compensa-

tion paths. A compensation path is comprised of a sequence of substitutions that logically replaces

a faulty PE by a spare one, and can be described as follows. Let a non-spare PE at location (x. y)

be faulty, then in any valid reconfiguration it has to be replaced by a healthy processor. Let the

faulty PE at (x, y) be logically replaced by a healthy PE, say at location (x', y'); logical replace-

ment implies that in the reconfigured array the physical PE at location (x', y') will be reindexed

as (x, y). The PE at (x', y') is in turn replaced by a healthy PE, say at location (x", y"); one can

continue this chain until one ends up at a spare PE. Now a compensation path can be defined as the

ordered sequence of nodes (x, y), (x', y'), (x", y"), --- , involved in the replacement chain. Thus,

the compensation paths determine neighbors of each PE in the logical or the reconfigured array.

Hence, once the compensation paths are determined, the reconfiguration procedure is completed

by connecting each PE to its logical neighbors.

It is easy to see that if the number of faulty PEs is less than the number of spare PEs, then one

can always define a set of compensation paths for successful reconfiguration. However, the charac-

teristics of the compensation paths (e.g., the geometrical distances between consecutive nodes, or

the relative positions of the nodes in the grid) determine the amount of routing hardware needed

to implement the necessary connections among the logical neighbors. It can be easily shown that if

the number of routing tracks is fixed, then one cannot allow arbitrary sets of compensation paths.

In other words, by limiting the hardware resources one limits the number of faulty patterns that

one can reconfigure. Hence, a natural question to ask is how many tracks should one provide so as
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to allow a large enough class of compensation paths, and yet keep the hardware redundancy low.

A model with very limited hardware resources has been studied in [16, 17, 38]. It consists of an

m x n array of non-spare PEs, 1 row (or column) of spare PEs along each boundary, a single-track

along every grid line (i.e., channel width = 1), and single-track switches located at intersections

where processors are connected to the grid. It is further assumed that a faulty PE can be converted

into a connecting element, thereby making an implicit assumption that there is an extra channel

within every PE (because of the assumption such models have also been referred to as an 1 --track
2

model). The single-track switch model's advantages arises from its inherent simplicity: since data

paths take up significant amount of area on a wafer/chip, considerable saving in area is achieved by

allowing only one data path along every grid line; moreover, the simplicity of the switches makes

the routing hardware more reliable. Furthermore, extensive simulations reported in [17] show that

considerable enhancement in yield can be achieved by reconfiguring the array grid models with

single-track switches.

We now briefly discuss the results reported in [17]. The paper derives a set of sufficient conditions

(stated in the form of a so-called reconfigurability theorem presented below) for determining whether

an array with a particular distribution of faulty processors is reconfigurable; where, a given array is

reconfigurable if the non-faulty processors can be connected to form an m x n array. The sufficient

conditions restrict the compensation paths to be straight. Fig. 7 shows a compensation path and

the corresponding routing required for replacing a single faulty processor in the single-track model;

note that the compensation path is straight and continuous. This simple concept of using straight

and continuous compensation paths can be also used in the presence of multiple faulty processors

and the sufficient conditions can be formally presented in the form of the so-called reconfigurability

theorem (for a formal proof, see [16, 17]):

Reconfigurability Theorem: Given an m x n array of non-spare PEs, with spare PEs along

the sides, it is reconfigurable into an m x n array of healthy processors by sinqle-track switches if !)

there exists a eet of continuous and straight compensation paths covering all the faulty non-spare

PEs and 2) there is neither intersection or near-miss among the compensation paths.

A near-miss situation occurs if two compensation paths in neighboring rows (columns) overlap

and are in opposite directions (see Fig. 8; note that a near-miss situation does not occur if the

compensation paths overlap by only one node).

In [17] an algorithm to determine valid reconfigurations that satisfy the conditions in the recon-

figurability theorem is also presented. The algorithm is developed by reformulating the reconfigura-

bility problem as a maximum independent set problem, and then adapting a well known algorithm

for determining maximum independent sets in a graph. However, the maximum independent set

problem is NP-complete and the best known algorithms take exponential time; hence, the algo-

rithm presented in [17] has exponential complexity. The question whether efficient polynomial time
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algorithms exist was left as an open one. Moreover, efficient algorithms were not knou F-en for

the restricted cases where spare processors are available only along, for example, two or three sides

(as opposed to on all four sides as shown in Fig. 6).

3.2 New Contributions

In view of the above results, the contributions of our work with regard to the single-track models

can be summarized as follows (see [38]):

" We showed that the conditions in the reconfigurability theorem are not necessary correcting

a claim made in [11].

* We developed a polynomial time algorithm (in fact, the complexity is O(1F12 ), where JFJ

is the number of faulty processors) for determining valid reconfigurations according to the

sufficient conditions. Moreover, linear time algorithms for determining valid reconfigurations

are developed for the restricted cases where the spare processors are not present along all four

sides of the array.

We should note here that the combinatorial problem underlying the reconfigurabiity issues in the

single-track model is a very interesting geometrical problem on rectangular grids, and can be stated

as follows:

Problem 1 Let V be the set of grid points in an m x n 2-dimensional grid, and let F C V.

Determine a set of straight lines such that

1. Each vertex v E F is assigned a straight line connecting it to one of the four boundaries of

the grid.

2. The straight lines are non-intersecting.

The algorithm developed by us appears to be the first-known polynomial time algorithm for this

problem.

The algorithms discussed so far focus on the satisfiability question, i.e., whether all the faulty

PEs can be replaced by straight and non-intersecting compensation paths. Often, however, a

more relevant issue might be to determine the maximum number of faulty processors that can be

replaced. In [1] a polynomial time algorithm of time complexity O(1F13) was developed for solving

the corr,,sponding combinatorial probler-i.

The motivation behind some of the results to be described next is to introduce a minimal amount

of additional hardware, that will allow a much larger class of compensation paths than the restricted

class of straight paths. One can easily observe that the sufficient conditions for reconfiguration as
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discussed above are also valid for more general array models such as the ones with multiple-tracks.

One, however, hopes that for such more powerful models it should be possible to develop more

general conditions to allow reconfiguration of ,rrays that otherwise could not be reconfigured in

the single-track model. With such motivation in mind, we first considered an augmented single-

track switch model as shown in Fig. 9. We showed that the augmented model is more powerful

than the simple single-track model: the compensation paths in the augmented model need not
be straight any more and can have bends. In general, if one allows multiple data paths along

every grid line (i.e. , a multiple-track model), then the compensation paths can be crooked and
the restriction of near misses is no longer required. Hence, a generalized sufficient condition can

be stated as follows: an array grid model with multiple-track switches is reconfigurable if one can

determine a set of non-intersecting compensation paths (continuous, but not necessarily straight)

for the faulty PEs in the array. We also showed that the combinatorial problem corresponding to

such a sufficient condition can be efficiently solved by reducing it to the well known problem of

determining maximum-flow in networks.

In a more recent work, we have made progress in developing new reconfiguration algorithms

(see [44]) for a different set of models that were first introduced in [39] (see also [3, 20, 46]). The

appeal of this set of models is its hardware simplicity. It consists of an N x (N + 1) array, where

N spare PEs are configured in the form of a spare column, and are located along one boundary of

the original N x N array. The goal of the reconfiguration algorithm is to obtain an N x N array

of healthy processors given that any N of the PEs are faulty; moreover, the reconfigured array

must satisfy certain neighborhood constraints. Let the physical array be the array given to us, and

let the logical array be the reconfigured array. Then the neighborhood constraint requires that in

the logical array the neighbors of a healthy processor be restricted to lie in a fixed neighborhood

around the healthy processor.

The reconfiguration algorithms presented in [391 for the above model are very fragile, and fail to

reconfigure even when the faulty PE distributions are very simple; the following are only two simple

instances (one can generate several other instances): (1) If the bottom row or the top row does

not have any faulty processors, (2) If there are two columns each with a stack of faulty processors.

even of size two.

The algorithms that we have developed can reconfigure all instances of arrays that the algorithms

reported in [39] can. Moreover, we can also reconfigure arrays with several other faulty distributions,

without relaxing the neighborhood constraints. In particular, we give reconfiguration algorithms for

the following cases (1) If every column has one faulty PE (2) If one column has two faulty PEs and

the rest of the columns have one faulty PE each or no faulty PEs, (3) If there are two stacks of

faulty PEs, each of length N/2, and (4) If the faulty PEs can be partitioned into blocks such that

each block can be considered as one of the above special cases.
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The reconfiguration algorithms are based on one simple algorithm that shows how to reconfigure

an N x (N + 1) array into an (N + 1) x N array and vice versa. Moreover, our algorithms generate

very regular patterns, and can be implemented in a distributed fashion instead of being processed

by one host processor. We should also mention here that in [3], a model similar to ours is considered:

however, they do not impose the strict neighborhood restrictions. We can show that the algorithms

in [3] will require larger neighborhood for arrays that can be reconfigured with smaller neighborhoods

w'ith our algorithm; the details will be provided in the full paper.

We are continuing our studies on developing more powerful models that have high reconfigura-

tion probability and yet does not require too much extra hardware.
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FIgure 5: A general model for a reconfigurable processor array; the circles show possible locations

of switches in the array.
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Spare Cells

State A State B State C SLate D

Figure 6: The array grid model based on single-track switches, shown with the possible states of a

switch.
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Compensation
path

Figure 7: A compensation path and the corresponding routing required for replacing a single faulty

processor in the single-track model.

DO ElE ElH

(a)

Dl EL I -
EL EL ELI

(b)

Figure 8: Near-miss situations among compensation paths: figure(a) shows a near-miss situation;

figure(b) shows a situation that does not correspond to a near-miss.
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State A State B State C State D State E

Figure 9: An augmented single-track model.
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